INFOGRAPHIC

THE FINAL FRONTIER: 3D PRINTING AND SPACE EXPLORATION

2023

3D PRINTING APPLICATIONS IN SPACE

Rockets

Additive manufacturing is enabling the creation of rockets that are entirely or partially 3D printed, revolutionizing the space industry.

Radio Antennae

In 2022, the National Radio Astronomy Observatory and Optisys collaborated on the metal 3D printing of orthomode transducers (OMT), which form part of electromagnetic devices.

Extraterrestrial Construction

Additive manufacturing is currently being used to attempt to make constructions that would be suitable for the lunar surface.

Satellites

Satellites can be manufactured entirely with 3D printing, for example by Australian firm Fleet Space.

ISS

On the International Space Station, testing is being undertaken to see the viability of 3D printing (including for spare parts!) and bioprinting in space.

Spacesuits

NASA is funding a project to create custom spacesuits for astronauts.

3D PRINTED PARTS IN ROCKETS

system, thrusters can also be 3D printed, as shown by the ESA back in 2015.

KEY FACTS & FIGURES ON ADDITIVE MANUFACTURING IN SPACE

\$2.1B

is the expected market value of AM in the Private Space Industry by 2026

(SMARTECH)

100 FEWER PARTS

are in Relativity's Space Terran 1 rocket thanks to AM.

(RELATIVITY SPACE)

YEARS

is possible in Launcher's 3D printed E-2 turbo pump thanks to its streamlined design.

(LAUNCHER)

was how long it took in total, from conception to end, for the Terran 1 to be ready for flight.

(RELATIVITY SPACE)

LESS THAN 60 DAYS

is the number of days it takes to fully complete Terran 1, from materials all the way to flight.

(RELATIVITY SPACE)

2030

is when we could already have a fully 3D printed 'Moon Village' according to the ESA.

TIMELINE

1994		DMLS, a key technology in aerospace additive manufacturing and one of the first metal 3D printing processes, is invented by EOS.
2010		Made In Space, one of the first companies dedicated to 3D printing in space, is founded.
2013	\bullet	NASA funded a prototype 3D printer to print pizza (and other meals) for astronauts.
2014	\bullet	SpaceX unveiled the Dragon V2 space capsule, whose launch escape system includes the SuperDraco engine chamber, printed using DMLS.
SEPT. 2014		NASA's ISM (In space manufacturing) project sent the first 3D printer to the space station to test 3D printing in Zero G.
2020	\bullet	NASA's Perseverance rover, which landed on Mars on Feb. 18, 2021, carried 11 metal 3D printed parts.
2021		17 companies, including SpaceX and winners of the NASA 3D Printed Habitat Challenge, were selected by NASA to co-develop lunar technologies.
2022		Uganda launched a satellite carrying a 3D bioprinter; NASA launched Artemis I which included rocket engine parts made using L-PBF.
2024		Relativity Space's 3D-printed rocket, the Terran 1, is set to launch from Cape Canaveral in Florida in the beginning of the year.

